
____________________________________ Using Hyperspectral Technologies to Map Hemlock Decline

Presentations Third Symposium on Hemlock Woolly Adelgid

73

USING HYPERSPECTRAL TECHNOLOGIES TO MAP HEMLOCK DECLINE:
PRE-VISUAL DECLINE ASSESSMENT FOR EARLY INFESTATION DETECTION

Jennifer Pontius1, Mary Martin2, Lucie Plourde2, and Richard Hallett1

1USDA Forest Service, Northeastern Research Station,
Durham, New Hampshire

2Complex Systems Research Center, University of New Hampshire,
Durham, New Hampshire

ABSTRACT

Hyperspectral remote sensing technology can help monitor hemlock health across large areas
of the landscape.  This study examines the capability of a commercially available sensor
(Specim’s AISA Eagle) to map hemlock decline due to hemlock wooly adelgid (HWA) infes-
tation in the Catskill Mountain area of New York.  The AISA Eagle was able to classify
hemlock health at the tree level into an 11-class rating system with a one-class tolerance accu-
racy of 88 percent.  The ability of this instrument to predict decline below class 4 (when
dieback and transparency reach levels first noticeable in the field) is based upon “pre-visual”
changes in chlorophyll content and function that are typical of incipient HWA infestation
and early stress.  This technology will enable land managers to assess and monitor detailed
changes in forest health across the landscape so that integrated pest management programs
can be effectively implemented.
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INTRODUCTION

One of the most pressing forest health issues currently facing North American forests is the
widespread decline of eastern hemlock (Tsuga canadensis Carriere) due to the hemlock woolly
adelgid (HWA), Adelges tsugae Annand.  The potentially severe consequences and large scale
of the HWA infestation requires that land managers be familiar with the actual location of the
hemlock resource, as well as its health and infestation status.

Most assessments of decline involve time-consuming field based methods.  Although
these methods are valuable in monitoring gross changes over time, they are not able to iden-
tify trees in the very early stages of decline (Sampson et al. 2000) or assess large acreages, both
crucial to the development of integrated pest management strategies aimed at managing the
hemlock resource.
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Remote sensing technologies are the most viable option to assist land managers in health
assessment and monitoring at a regional scale.  To date, remote sensing of forest health has
been limited to the classification of coarse defoliation classes using aerial photography or
multi-spectral resolution visible/NIR space-based sensors, such as Landsat Thematic Map-
per (TM) (Lambert et al. 1995; Royle and Lathrop 1997 and 2002, Royle et al. 1995). When
measuring decline solely as a function of defoliation, earlier signs of stress such as reductions
in photosynthesis and chlorophyll content are not detected.  Instruments with higher spectral
resolution are needed to accurately detect such changes in vegetation condition (Treitz and
Howarth 1999).

There is mounting evidence that hyperspectral instruments have the capability, not only
to assess defoliation, but also to identify the early signs of stress—in some cases before visual
symptoms are apparent (Cibula and Carter 1992,  Mohammed et al. 1995,  Zarco-Tejada et al.
2000a and 2000b).  This can be explained by the tendency of stressed leaves to undergo reduc-
tion in photosynthetic activity and to lose chlorophyll.  These changes alter reflectance at
chlorophyll-sensitive wavelengths (Vogelmann and Rock 1988,  Rock et al. 1988,  Vogelmann
et al. 1993,  Gitelson and Merzlyak 1996,  Carter and Knapp 2001).

Chlorophylla and b content are particularly good detectors of stress because of their
direct role in photosynthesis.  Narrow wavebands near 700nm where changes in chlorophyll
absorption are easily detectable have been recommended for early detection of forest damage
(Hoque et al. 1990 and 1992) and were able to detect decreased vigor, before visual symptoms
were apparent, in pine seedling canopies (Cibula and Carter 1992).  Because changes in chlo-
rophyll function typically precede changes in chlorophyll content, chlorophyll fluorescence
has also been shown to be a useful tool in identifying pre-visual strain (Zarco-Tejada et al.
2000a and 2000b).

Preliminary work by the authors using an ASD FieldSpec Pro FR field spectroradiometer
(Analytical Spectral Devices) highlight several indices and wavelengths that are able to track
hemlock stress, including pre-visual symptoms.  This work has resulted in the development
of equations capable of predicting a 10-class hemlock health scale on independent data with
96% one-class tolerance accuracy (Pontius et al. In press-a).  Additional work by the authors
using remotely sensed hyperspectral imagery from NASA’s Airborne Visible Infrared Imag-
ing Spectrometer (AVIRIS) produced a hemlock abundance map that correctly identified
hemlock dominated pixels (>50% basal area) with 88% accuracy.  Reflectance at a chloro-
phyll sensitive wavelength (683nm) coupled with a water band index (R970/900) was able to
predict plot level decline with 100 percent one-class tolerance accuracy.  The extreme accu-
racy at the low (0-4) end of the range indicated that these wavelengths might be used to assess
early decline, before visual symptoms are apparent (Pontius et al., In press-b).

This study was designed to determine if similar hyperspectral techniques from a com-
mercially available remote sensing platform could be used to predict early hemlock decline
symptoms in the Catskills State Park, New York.  The hyperspectral instrument used in this
study was the airborne AISA Eagle, measuring 130 contiguous bands from 400nm – 970nm,
with 3nm spectral resolution, and 2m spatial resolution.  Our objectives are to: (1) present the
key wavelengths and/or stress indices most strongly correlated with hemlock decline, (2) use
this information to develop a simple linear equation to predict decline using a minimal num-
ber of variables, and (3) discuss the potential of commercially available hyperspectral sensors.
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METHODS

Ground truth data from 65 canopy-dominant hemlocks in the Catskills (Figure 1) were col-
lected using methods specifically designed to quantify the various sequential symptoms of
decline that follow adelgid infestation.  This included the percent of terminal branchlets with
new growth, percent transparency (quantified using a concave spherical densiometer), per-
cent fine twig dieback, and live crown ratio (USDA Forest Service Crown Rating Guide).
Raw health data was normalized by assigning a decline value to each measurement (Table 1).
This normalized data was then averaged for each tree to determine the decline rating that best
described the trees’ overall status (where 0 = perfect health and 10 = dead).  Species data, GPS
location and canopy position were recorded across the imagery for an additional 465 trees for
species mapping, including over 20 species.  Geographic location data was collected for all
trees using a Trimble GeoXT global positioning system with sub-meter accuracy.

On September 3, 2004, hyperspectral data from Helicopter Applicators, Inc.’s AISA
Eagle was obtained for a 25,000 acre region of the Catskills State Park (Figure 1).  Atmo-
spheric corrections were conducted in house by Helicopter Applicators, Inc.  Individual passes
were mosaicked together and geometrically registered to USGS 1m resolution digital
orthoquads using a polynomial degree 2 warping method (ENVI 4.0 software, Research Sys-
tems, Inc).  Reflectance spectra were then extracted for pixels corresponding with the ground
truth data locations.  A mask of all shadow resulting from cloud cover, steep northern as-
pects, and canopy geometry was applied before application of predictive equations.
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Figure 1. Grey rectangles represent the 2004 HAI study area, comprising a 25,000-acre subset of the original
2001 AVIRIS Catskills imagery (large black square).  A series of hemlock health and hardwood plots
were establised for ground truth in health calculations and species mapping.
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Table 1. A summary of the typical values observed for each measured characteristic by decline class.  The
best-fit categories for each of the individual measurements were averaged to determine one overall
decline rating for each tree.

Decline Class Health Status Characteristics

0 Perfect health

100% new growth
Negligible canopy transparencey
Negligible fine twig dieback
Greater than 90% photosynthetically active canopy

1 Very healthy

Over 90% new growth
6-9% canopy transparency
Negligible fine twig dieback
80-89% photosynthetically active canopy

2
Healthy
(typical forest
co-dominant)

Over 85% of branches produce new growth
10-14% canopy transparency
Less than 5% fine twig dieback
70-79% photosynthetically active canopy

3 Earliest decline

80-85% of branches produce new growth
15-19% canopy transparency
5-10% fine twig dieback
65-69% photosynthetically active canopy

4 Light decline

75-79% of branches produce new growth
20-24% canopy transparency
Approaching 10% fine twig dieback
60-64% photosynthetically active canopy

5 Light to moderate decline

70-74% of branches produce new growth
25-29% canopy transparency
10-15% fine twig dieback
50-59% photosynthetically active canopy

6 Moderate decline

60-69% of branches produce new growth
30-34% canopy transparency
Up to 15% fine twig dieback
40-49% photosynthetically active canopy

7
Moderate to severe
decline

40-59% of branches produce new growth
35-39% canopy transparency
15-20% fine twig dieback
30-39% photosynthetically active canopy

8 Severe decline

20-39% of branches produce new growth
40-44% canopy transparency
Up to 20% fine twig dieback
20-29% photosynthetically active canopy

9 Death imminent

Less than 20% of branches produce new growth
Greater than 45% canopy transparency
Greater than 25% fine twig dieback
Less than 20% photosynthetically active canopy

10 Dead 100% defoliation



____________________________________ Using Hyperspectral Technologies to Map Hemlock Decline

Presentations Third Symposium on Hemlock Woolly Adelgid

77

Previously established stress detecting wavelengths and indices (Pontius et al. In press-
a; Table 2) were related to decline data to determine the strongest stress correlates (Kleinbaum
et al 1998).  These were then entered into a stepwise linear regression with conservative sig-
nificance cutoff limits to avoid over-fitting (probability to enter = 0.250, probability to leave
= 0.01).  Mallow’s Cp and PRESS statistics were used to compare the predictive abilities of
various models (Kozak and Kozak 2003).  Full double-cross validation (jackknifed residuals)
were used in lieu of independent validation to assess predictive abilities (Kozak and Kozak
2003).  After establishing the best-fit hemlock decline model, the resulting equation was ap-
plied to all non-shadowed hemlock pixels within the imagery.

Table 2. A list of existing indices included in our analyses that are known to have strong relationships with
stress-specific physiological responses.

Index Formula
Primary Absorbance

Feature
Citation

Carter and Miller Stress CMS = Chlorophyll content Carter and Miller 1994

Curvature Index CI =
Chlorophyll a & b content;
chlorophyll fluorescence

Zarco-Tejada et al. 2002

Derivative Chlorophyll
Index

DCI = Chlorophyll fluorescence Zarco-Tejada et al. 2002

Chlorophyl Fluorescence CF =
Chlorophyll flurorescence;
photosynthetic activity

Mohammed et al. 1995

Normalized Difference
Vegetation Index NDVI =

Chlorophyll content and
energy absorption

Deblonde & Cihlar 1993;
Gamon et al. 1997;
Myneni et al. 1995;
Rousse et al. 1974

Photo-chemical
Reflectance Index

PRI = Xanthopyll Cycle Activity
Gamon et al. 1990;
Gamon et al. 1997;
Rahman et al. 2001

Red Edge Inflection Point REIP =
Chlorophyll a content;
green vegetation density

Gitelson et al. 1996;
Rock et al. 1988;
Vogelmann et al. 1993

Ratio Vegetation Index RVI = Chlorophyll content
Pearson and Miller 1972;
Royal and Lathrop 2001

Water Band Index WBI = Canopy water content
Carter 1993; Penuelas et
al. 1997; Tucker 1980

R694 nm
R760 nm

R683 nm • 2
R675 nm • R691 nm

FD705 nm
FD723 nm

FD690 nm
FD735 nm

R800 nm - R680 nm
R800 nm + R680 nm

R531 nm - R570 nm
R531 nm + R570 nm

λFD max

R800 nm
R680 nm

R970 nm
R900 nm
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RESULTS AND DISCUSSION

An examination of the average spectra for various decline classes highlights the spectral changes
that accompany hemlock decline (Figure 2).  Although the full spectrum is obviously differ-
ent, our goal was to identify a smaller subset of variables that may account for the maximum
variability in spectral signatures.  Building off of the key variables identified in previous
benchtop hyperspectral work (Pontius et al. In press-a), several wavelengths and stress indi-
ces were significantly correlated with hemlock decline using the AISA Eagle sensor (Table 3).
Of these, only R680, R760, SD737, and RVI were retained in the final stepwise, linear regres-
sion model to predict hemlock decline (Table 4).  This model predicted decline on the 41
sample ground truth data set (R2 = 0.75 and RMSE = 0.81).  Treated as a class variable, declin-
ing trees could be identified within one health class with 88% accuracy (Figure 3).

While this model works well on an empirical basis, it is also important that there be a
theoretical framework for the relationships witnessed.  In the predictive model presented
here, two of the four terms are wavelengths of known chlorophyll absorption (Mohammed et
al. 1995, Carter and Miller 1994, Pearson and Miller 1972, Zarco-Tejada et al. 2002a, Carter
and Knapp 2001).  Miller et al. (1990) identified leaf chlorophyll content, as one of the most
significant factors affecting plant vigor.

Chlorophylla content, captured by R680 and RVI, is a particularly good indicator of
stress because of its direct role in photosynthesis.  Such narrow wavebands are sensitive to
early stress induced decreases in leaf chlorophyll content (Carter 1993) and have been recom-
mended for early detection of forest damage (Hoque et al. 1990 and 1992).  In hemlock, Royle
and Lathrop (1997) used RVI calculated from Landsat TM to predict and map four hemlock
defoliation based damage classes with 64% accuracy.

Chlorophyll fluorescence sensitive wavelengths were also retained for the final model,
including: 680nm and 760nm. Fluorescence is inversely related to photosynthetic rates,
(D’Ambrosio et al. 1992,  Schreiber and Bilger 1994,  Larcher 1994) making it a good measure
of relative photosynthetic activity.  Because changes in photosynthetic function typically pre-
cede changes in chlorophyll content, chlorophyll fluorescence has been shown to be a useful
tool in identifying pre-visual strain in other studies as well as the predictive equation pre-
sented here (Zarco-Tejada et al. 2000a and 2000b).

The SD737 was the final key term in predicting hemlock decline.  This location has a
strong -OH absorbance feature (Osborne and Fearn 1986).  Although -OH bonds are found
in many structures, one of the most obvious and most common in plant tissues is water.
Water sensitive wavelengths have been identified in early ASD and AVIRIS decline surveys
(Pontius et al. In press-a).  It is possible that reflectance at this location is picking up slight
differences in the canopy water content of subject trees.

Relative susceptibility of hemlock to HWA has been linked to various site and land-
scape factors related to water availability (Bonneau et al. 1997, Onken 1995, Royle and Lathrop
1999).  Drier conditions stress already weakened tress, making them more susceptible to HWA
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Figure 2. A close look at the average spectra for various decline stages highlight those wavelengths found to be
significant in predicting hemlock decline.

Variable Correlation* Absorbance Feature Citation

R680** 0.70 Chlorophylla & Fluorescence Mohammed et al. 1995

R552 0.53 Chlorophylla Penuelas et. al. 1997

PRI -0.53 Xanthophyll Cycle Activity Gamon et al. 1990; 1997

CMS 0.49 Chlorophyll Content Carter and Miller 1994

NDVI -0.33 Chlorophyll Content Deblonde and Cihlar 1993

Fluorescence 0.30 Chlorophyll Fluorescence Mohammed et al. 1995

R760** 0.27 Chlorophyll Fluorescence Carter and Miller 1994

SD737** 0.17 OH Bonds Osborne and Fearn 1986

RVI** -0.12 Chlorophyll Content Pearson and Miller 1972

*Boldface indicates significant correlations at the 0.1 level.
**Signifies a significant variable retained in the final predictive stepwise model.

Table 3. Previously developed ASD- and AVIRIS-based decline equations were applied to decline data with
significant correlations (p<0.0001).  Pairwise correlations between key AISA Eagle variables and
hemlock decline are listed in order of correlation strength.
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Figure 3. Using the four-term linear regression equation based on R680, R760, SD737, and RVI, decline rating
was predicted with an R2 = 0.75 and RMSE = 0.81.  Converting this data to a class variable showed
88% one-class tolerance accuracy.  The accuracy below decline class 4 indicates that this technology
could be used to identify trees in the very early stages of decline.

Table 4. The final AISA Eagle based linear regression equation for predicting hemlock decline, where
RVI = R800/R680.

Term Estimate Standard Error Prob>|t|

Intercept -7.249 1.840

R680 0.012 0.002 <0.0001

R760 -0.001 0.000 0.0016

SD737 0.007 0.002 0.0020

RVI 1.169 0.271 0.0001

Rsquare = 0.75
RMSE = 0.81
Terms = 4
N = 41
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and decline.  There is also evidence that HWA injects toxic saliva at feeding sites (McClure et
al. 1996): it is postulated that the toxic effects of this saliva may include a constricting effect on
xylem, which could lead to leaf dehydration following infestation (Shields et al. 1995).  Al-
though we did not directly measure leaf water content, it is plausible that trees experiencing
the most significant decline and highest infestation levels may be suffering from water stress,
leading to significance at water-sensitive wavelengths.

Applying this equation to the full extent of the AISA Eagle imagery, more severe de-
cline is evident in the eastern region, coinciding with the area along the Hudson River and
Ashokan Reservoir where HWA has the longest infestation history (Figure 4).  Average jack-
knifed residuals of 0.13 indicate that this equation should also work on independent data
within the same range of decline (Kozak and Kozak 2003).  While these results are promising,
a more rigorous validation covering the full range of decline symptoms in the Catskills with
independent validation is required to adequately test how robust this model is.
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Figure 4. Applied to all pixels, the decline prediction highlights more severe decline symptoms in the eastern
portion of the Catskills where HWA has the longest history in hemlock stands.  Other stressors are
not excluded from this analysis.  The obvious gaps in coverage and spectral artifacts (striping)
highlight data acquisition problems to be aware of when purchasing imagery.
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IDENTIFICATION OF PRE-VISUAL DECLINE SYMPTOMS

Early symptoms of stress in forest species include reductions in photosynthetic activity and
chlorophyll content (Mohammed et al. 1995).  Such changes are not readily detectible from
the ground in mature stands.  This is why most forest health ratings rely on defoliation mea-
surements such as transparency or dieback (USDA Forest Service Crown Rating Guide).  Up
until decline class 4, both of these measurements are below what is typically first categorized
as decline in the field (fine twig dieback below 5% and transparency below 15%).  Therefore,
any results that are successfully able to differentiate between healthy samples (decline class 0)
and samples in decline category 4 are most likely picking up changes in chlorophyll content
and function before defoliation symptoms are apparent. Prediction accuracy in the low end
of the decline range (0-4) was within a one-class tolerance 92% of the time.  These results
indicate that this technology can be used to detect tree health before visual symptoms are
apparent across the landscape.

CROSS-INSTRUMENT APPLICATION

In order for this technology to be applicable on a large spatial and temporal scale, the rela-
tionships presented here must also be shown to work on other datasets.   The initial selection
of wavelengths for examination with the AISA Eagle imagery was based on results from pre-
vious ASD and AVIRIS work.  All three instruments demonstrated similar relationships be-
tween key wavelengths and decline. We believe this indicates that the work presented here
will prove robust enough for application to other narrow-band sensors from multiple remote
sensing platforms.

Because the ratios or pairs of wavelengths used to calculate indices highlight significant
features while correcting for geometrical and background effects (Baret and Guyot 1991),
cross-instrument application could be direct.  Such simple transformations have been closely
correlated with plant characteristics without the sensitivity to external variables such as sun
angle or instrument variability (Pinty et al. 1993).  Ongoing work will focus on indices and
ratios in order to speed processing time.

However, this is not to say that ground truth data will not continue to be necessary in
hyperspectral work.  The input of known spectra to any predictive model will always in-
crease accuracy and ensure that predictions are as robust as possible. In addition, ground
truth data will enable land managers to know the accuracy of their maps and limitations of
predictive coverages they are using in their management plans.

CONCLUSIONS

These results indicate that a simple four-term linear regression model based on chlorophylla,
fluorescence, and water absorption features is able to accurately predict a detailed hemlock
decline rating system (88% one-class tolerance accuracy).  The one-class tolerance accuracy
at the extreme low end of the decline scale (0, healthy to 4, pre-visual decline) was 92%,
indicating that hyperspectral sensors could be used to detect trees in the very early stages of
decline.
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There is little evidence that these technologies can diagnose causal agents, as stress may
be related to a variety of factors.  However, our ground truth data suggests that most declin-
ing hemlocks in this region are currently impacted by HWA.  These techniques would pro-
vide a much-needed tool for the early detection of stressors such as HWA infestation, and
will allow forest land management agencies to focus biological control efforts on incipient
infestations before trees are severely impacted.
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